83 research outputs found

    The impact of body and head dynamics on motion comfort assessment

    Full text link
    Head motion is a key determinant of motion comfort and differs substantially from seat motion due to seat and body compliance and dynamic postural stabilization. This paper compares different human body model fidelities to transmit seat accelerations to the head for the assessment of motion comfort through simulations. Six-degree of freedom dynamics were analyzed using frequency response functions derived from an advanced human model (AHM), a computationally efficient human model (EHM) and experimental studies. Simulations of dynamic driving show that human models strongly affected the predicted ride comfort (increased up to a factor 3). Furthermore, they modestly affected sickness using the available filters from the literature and ISO-2631 (increased up to 30%), but more strongly affected sickness predicted by the subjective vertical conflict (SVC) model (increased up to 70%)

    Simulating vibration transmission and comfort in automated driving integrating models of seat, body, postural stabilization and motion perception

    Full text link
    To enhance motion comfort in (automated) driving we present biomechanical models and demonstrate their ability to capture vibration transmission from seat to trunk and head. A computationally efficient full body model is presented, able to operate in real time while capturing translational and rotational motion of trunk and head with fore-aft, lateral and vertical seat motion. Sensory integration models are presented predicting motion perception and motion sickness accumulation using the head motion as predicted by biomechanical models

    Modelling individual motion sickness accumulation in vehicles and driving simulators

    Full text link
    Users of automated vehicles will move away from being drivers to passengers, preferably engaged in other activities such as reading or using laptops and smartphones, which will strongly increase susceptibility to motion sickness. Similarly, in driving simulators, the presented visual motion with scaled or even without any physical motion causes an illusion of passive motion, creating a conflict between perceived and expected motion, and eliciting motion sickness. Given the very large differences in sickness susceptibility between individuals, we need to consider sickness at an individual level. This paper combines a group-averaged sensory conflict model with an individualized accumulation model to capture individual differences in motion sickness susceptibility across various vision conditions. The model framework can be used to develop personalized models for users of automated vehicles and improve the design of new motion cueing algorithms for simulators. The feasibility and accuracy of this model framework are verified using two existing datasets with sickening. Both datasets involve passive motion, representative of being driven by an automated vehicle. The model is able to fit an individuals motion sickness responses using only 2 parameters (gain K1 and time constant T1), as opposed to the 5 parameters in the original model. This ensures unique parameters for each individual. Better fits, on average by a factor of 1.7 of an individuals motion sickness levels, are achieved as compared to using only the group-averaged model. Thus, we find that models predicting group-averaged sickness incidence cannot be used to predict sickness at an individual level. On the other hand, the proposed combined model approach predicts individual motion sickness levels and thus can be used to control sickness.Comment: 8 pages, 9 figure

    Driver Control Actions in High-Speed Circular Driving

    Get PDF
    In this pilot study we investigate driver control actions during high speed cornering with a rear wheel drive vehicle. Six drivers were instructed to perform the fastest maneuvers possible around a marked circle, while trying to retain control of the vehicle and constant turning radius. The data reveal that stabilization of the vehicle is achieved with a combination of steering and throttle regulation. The results show that the drivers used steering control to compensate for disturbances in yaw rate and sideslip angle. Vehicle accustomed drivers had the most consistent performance resulting in reduced variance of task metrics and control inputs

    What impressions do users have after a ride in an automated shuttle? An interview study

    Get PDF
    In the future, automated shuttles may provide on-demand transport and serve as feeders to public transport systems. However, automated shuttles will only become widely used if they are accepted by the public. This paper presents results of an interview study with 30 users of an automated shuttle on the EUREF (Europäisches Energieforum) campus in Berlin-Schöneberg to obtain in-depth understanding of the acceptance of automated shuttles as feeders to public transport systems. From the interviews, we identified 340 quotes, which were classified into six categories: (1) expectations about the capabilities of the automated shuttle (10% of quotes), (2) evaluation of the shuttle performance (10%), (3) service quality (34%), (4) risk and benefit perception (15%), (5) travel purpose (25%), and (6) trust (6%). The quotes indicated that respondents had idealized expectations about the technological capabilities of the automated shuttle, which may have been fostered by the media. Respondents were positive about the idea of using automated shuttles as feeders to public transport systems but did not believe that the shuttle will allow them to engage in cognitively demanding activities such as working. Furthermore, 20% of respondents indicated to prefer supervision of shuttles via an external control room or steward on board over unsupervised automation. In conclusion, even though the current automated shuttle did not live up to the respondents’ expectations, respondents still perceived automated shuttles as a viable option for feeders to public transport systems.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Transport and PlanningHuman-Robot InteractionIntelligent VehiclesTransport and Plannin

    Motion Cueing Algorithm for Effective Motion Perception: A frequency-splitting MPC Approach

    Full text link
    Model predictive control (MPC) is a promising technique for motion cueing in driving simulators, but its high computation time limits widespread real-time application. This paper proposes a hybrid algorithm that combines filter-based and MPC-based techniques to improve specific force tracking while reducing computation time. The proposed algorithm divides the reference acceleration into low-frequency and high-frequency components. The high-frequency component serves as a reference for translational motion to avoid workspace limit violations, while the low-frequency component is for tilt coordination. The total acceleration serves as a reference for combined specific force with the highest priority to enable compensation of deviations from its reference values. The algorithm uses constraints in the MPC formulation to account for workspace limits and workspace management is applied. The investigated scenarios were a step signal, a multi-sine wave and a recorded real-drive slalom maneuver. Based on the conducted simulations, the algorithm produces approximately 15% smaller root means squared error (RMSE) for the step signal compared to the state-of-the-art. Around 16% improvement is observed when the real-drive scenario is used as the simulation scenario, and for the multi-sine wave, 90% improvement is observed. At higher prediction horizons the algorithm matches the performance of a state-of-the-art MPC-based motion cueing algorithm. Finally, for all prediction horizons, the frequency-splitting algorithm produced faster results. The pre-generated references reduce the required prediction horizon and computational complexity while improving tracking performance. Hence, the proposed frequency-splitting algorithm outperforms state-of-the-art MPC-based algorithm and offers promise for real-time application in driving simulators.Comment: 8 pages, 10 figures, 3 tables, conference (DSC 2023

    Model Predictive Contouring Control for Vehicle Obstacle Avoidance at the Limit of Handling

    Full text link
    This paper proposes a non-linear Model Predictive Contouring Control (MPCC) for obstacle avoidance in automated vehicles driven at the limit of handling. The proposed controller integrates motion planning, path tracking and vehicle stability objectives, prioritising obstacle avoidance in emergencies. The controller's prediction model is a non-linear single-track vehicle model with the Fiala tyre to capture the vehicle's non-linear behaviour. The MPCC computes the optimal steering angle and brake torques to minimise tracking error in safe situations and maximise the vehicle-to-obstacle distance in emergencies. Furthermore, the MPCC is extended with the tyre friction circle to fully exploit the vehicle's manoeuvrability and stability. The MPCC controller is tested using real-time rapid prototyping hardware to prove its real-time capability. The performance is compared with a state-of-the-art Model Predictive Control (MPC) in a high-fidelity simulation environment. The double lane change scenario results demonstrate a significant improvement in successfully avoiding obstacles and maintaining vehicle stability.Comment: Accepted to the 28th IAVSD International Symposium on Dynamics of Vehicles on Roads and Track

    Evaluation of motion comfort using advanced active human body models and efficient simplified models

    Full text link
    Active muscles are crucial for maintaining postural stability when seated in a moving vehicle. Advanced active 3D non-linear full body models have been developed for impact and comfort simulation, including large numbers of individual muscle elements, and detailed non-linear models of the joint structures. While such models have an apparent potential to provide insight into postural stabilization, they are computationally demanding, making them less practical in particular for driving comfort where long time periods are to be studied. In vibrational comfort and in general biomechanical research, linearized models are effectively used. This paper evaluates the effectiveness of simplified 3D full-body human models to capture comfort provoked by whole-body vibrations. An efficient seated human body model is developed and validated using experimental data. We evaluate the required complexity in terms of joints and degrees of freedom for the spine, and explore how well linear spring-damper models can approximate reflexive postural stabilization. Results indicate that linear stiffness and damping models can well capture the human response. The results are improved by adding proportional integral derivative (PID) and head-in-space (HIS) controllers to maintain the defined initial body posture. The integrator is shown to be essential to prevent drift from the defined posture. The joint angular relative displacement is used as the input reference to each PID controller. With this model, a faster than real-time solution is obtained when used with a simple seat model. The paper also discusses the advantages and disadvantages of various models and provides insight into which models are more appropriate for motion comfort analysis

    Kinematic body responses and perceived discomfort in a bumpy ride: Effects of sitting posture

    Full text link
    The present study investigates perceived comfort and whole-body vibration transmissibility in intensive repetitive pitch exposure representing a bumpy ride. Three sitting strategies (preferred, erect, and slouched) were evaluated for perceived body discomfort and body kinematic responses. Nine male and twelve female participants were seated in a moving-based driving simulator. The slouched posture significantly increased lateral and yaw body motion and induced more discomfort in the seat back area. After three repetitive exposures, participants anticipated the upcoming motion using more-effective postural control strategies to stabilize pelvis, trunk, and head in space.Comment: 4 pages, 2 tables, 1 figur

    Effects of Concurrent Continuous Visual Feedback on Learning the Lane Keeping Task

    Get PDF
    This study investigated the training effectiveness of continuous visual feedback in a simulator-based lane keeping task. Two groups of student drivers (total of 30 participants) were instructed to drive as accurately as possible in the center of the right lane in a self-paced driving task during five 8-min sessions. One group received visual feedback using a horizontal compensatory display positioned on the dashboard, which provided an indication of the momentary distance to the lane center during the three training sessions. During two retention sessions (immediate and one day delayed) both groups drove without the augmented feedback. The augmented feedback resulted in improved performance on a measure lane keeping accuracy, but this effect disappeared during retention. Furthermore, the augmented feedback resulted in increased steering wheel activity during all sessions, and increased driver workload in the delayed retention session. These results provide support for the guidance hypothesis and have possible implications for the use of continuous concurrent feedback in simulatorbased driver training
    • …
    corecore